Chemistry Letters 1997 889

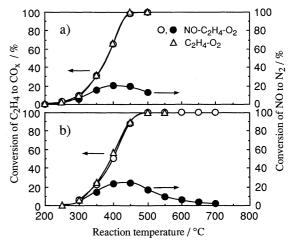
Selective Suppression of Undesirable Competitive Oxidation during Selective Catalytic Reduction of Nitrogen Monoxide by Ethene in Excess Oxygen over Metal-Loaded Aluminas

Noriyasu Okazaki,* Yoshiki Katoh, Yoshikazu Shiina, Akio Tada, and Masakazu Iwamoto[†]
Department of Applied and Environmental Chemistry, Kitami Institute of Technology, Kitami 090

[†]Catalysis Research Center, Hokkaido University, Sapporo 060

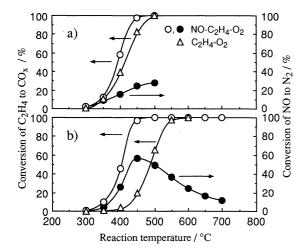
(Received May 23, 1997; CL-970390)

Calcining cobalt or nickel-loaded alumina at high temperatures suppressed selectively the undesirable oxidation of ethene by oxygen in the selective reduction of nitrogen monoxide by ethene in excess oxygen, while such an effect was not observed over ironloaded alumina. The reasons were also explained on the basis of the results of XPS studies.


The selective catalytic reduction of nitrogen monoxide by hydrocarbons (SCR-NO) in excess oxygen has been investigated extensively as one of the promising deNO_x processes. In the NOhydrocarbons-O2 reaction system, more than two kinds of oxidations of hydrocarbons will generally take place: one is the oxidation by a mixture of NO and O2 to produce N2 (the objective reaction), and another is the oxidation by O₂ alone (a major side reaction). One of the crucial problems of designing an effective catalyst for the SCR-NO is to suppress selectively the oxidation of hydrocarbons by O₂. Alumina² is known as an excellent oxide catalyst for the SCR-NO, which has much higher selectivity towards N₂ formation. By adding a transition metal on the alumina its activity was enhanced³⁻⁸ but at the same time the activity for the oxidation of hydrocarbons by O2 was also enhanced. Few studies have been performed on the effective suppression of undesirable competitive oxidation.^{9, 10} Hamada et al. ¹⁰ reported that raising the calcination temperature of 2 wt% Co-loaded alumina resulted in a decrease in propane conversion and an increase in NO conversion during SCR-NO by propane. This result indirectly indicates that high temperature-calcination brought about the selective suppression of the oxidation of propane by O₂. However, it is not easy to evaluate the contribution of the oxidation of propane by O₂ alone on the basis of the results of the SCR-NO by propane. In the present study, therefore, the oxidation of ethene by O₂ in the absence of NO has been compared with the oxidation in the presence of NO over several metal-loaded aluminas (M/Al₂O₃), because such a comparison can directly give us information about the degree of the selective suppression of the former oxidation.

All M/Al₂O₃ catalysts were prepared by the impregnation of alumina with aqueous solutions of corresponding metal acetates. The solvent evaporation took place while stirring and in a vacuum (water pump) with rotary evaporator at 50 °C until the solid seemed dry, followed by drying at 120 °C for 24 h, and heating at 500 °C for 4 h in air. The alumina used throughout was prepared by hydrolyzing aluminum isopropoxide followed by calcining at 600 °C for 24 h. All the catalyst precursors were ground to powder, and then pressed into pellets followed by crushing, sieving (30-42 mesh), and calcining at 500 or 800 °C for 4 h in air before use. A M/Al₂O₃ catalyst is denoted as follows: M(loading wt%)/Al₂O₃ (calcination temp./ °C). Both NO-C₂H₄-O₂ and C₂H₄-O₂ reactions were carried out with a fixed bed flow reactor at a W/F of 0.18 g·s·cm⁻³ (catalyst, 0.4 g; total flow rate, 130 cm³·min⁻¹) at temperatures ranging from 200 to 700 °C. The reactant gas (NO,

1000 or 0 ppm; O_2 , 2.0%; C_2H_4 , 500 ppm; He, balance) was passed through a catalyst bed. The outflow gas was analyzed by gas chromatography with a Molecular Sieve 5A (3 m; separation for N_2 , O_2 , CO, and NO) and Porapak Q (3 m; separation for CO_2 , C_2H_4 , and N_2O) columns. Catalytic activities for NO reduction were evaluated in terms of percentage conversions of NO to N_2 , because N_2O formation was negligible under the present reaction conditions.


In Figure 1a, the oxidation activity curve for the NO-C₂H₄-O₂ reaction was compared with that for the C₂H₄-O₂ reaction over Fe(5 wt%)/Al₂O₃(500). Clearly, a set of the oxidation activity curves was exactly identical. This result means that the NO-C₂H₄-O₂ reaction producing N₂ competes equally with the C₂H₄-O₂ reaction. A similar relationship was also reported for a set of NO-C₃H₈-O₂ and C₃H₈-O₂ reactions over Pt/Al₂O₃ and Cu-ZSM-5.⁵ After calcination at 800 °C, a set of the oxidation activity curves shifted to the higher temperature side but still remained identical (Figure 1b); the oxidation activities for the two reactions were reduced equally. Such a calcination effect has not been reported for SCR-NO over Fe/Al₂O₃.³, ⁴, ⁹ Regarding the NO reduction activity of Fe(5 wt%)/Al₂O₃(500), there was no noticeable variation due to the difference in calcination temperature (Figure 1).

With Co(5 wt%)/Al $_2$ O $_3$ (500), a set of the oxidation activity curves was close each other (Figure 2a). However, on calcination at 800 °C (Figure 2b), a set of the oxidation activity curves became evidently separated; favorably, the curve for the C $_2$ H $_4$ -O $_2$ reaction shifted farther to a higher temperature side than that for the NO-C $_2$ H $_4$ -O $_2$. In other words, calcination at 800 °C caused the selective suppression of the C $_2$ H $_4$ -O $_2$ reaction. This situation ought to

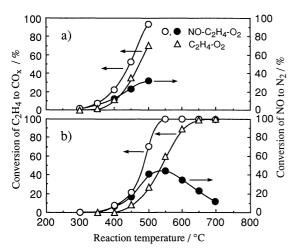


Figure 1. Temperature dependence of the catalytic activities of Fe(5 wt%)/Al₂O₃ catalyst calcined at (a) 500 °C and (b) 800 °C. Conditions: NO = 1000 or 0 ppm, C_2H_4 = 500 ppm, O_2 = 2.0%, catalyst = 0.4 g, total flow rate = 130 ml·min⁻¹, W/F = 0.18 g·s·cm⁻³.

890 Chemistry Letters 1997

Figure 2. Temperature dependence of the catalytic activities of $\text{Co}(5 \text{ wt}\%)/\text{Al}_2\text{O}_3$ catalyst calcined at (a) 500 °C and (b) 800 °C. Conditions: the same as those in Figure 1.

Figure 3. Temperature dependence of the catalytic activities of Ni(5 wt%)/Al $_2$ O $_3$ catalyst calcined at (a) 500 °C and (b) 800 °C. Conditions: the same as those in Figure 1.

enhance the NO- C_2H_4 - O_2 reaction producing N_2 . Actually the NO conversion to N_2 became much higher than that over Co(5 wt%)/Al₂O₃(500) (Figure 2b).

Again with Ni(5 wt%)/Al₂O₃ (Figure 3), a set of the oxidation activity curves became separated with increasing calcination temperature as in the situation of the Co(5 wt%)/Al₂O₃.

As can be seen in Figure 4, the XPS spectra indicate that Fe(5 wt%)/Al₂O₃(500) contained only MO_x while Co(5 wt%)/Al₂O₃(500) and Ni(5 wt%)/Al₂O₃(500) contained MAl₂O₄ and MO_x (NiO: very little). On calcination at 800 °C, however, the peaks due to Co₃O₄ and NiO almost disappeared indicating that those particles were highly dispersed, while the peak due to Fe₂O₃ remained. The results on the Co/Al₂O₃ and Fe/Al₂O₃ catalysts agree with those on corresponding catalysts (2 wt% loading). It was reported that large Fe₂O₃ particles on Fe(2 wt%)/Al₂O₃ prepared by the impregnation method catalyzed the C₃H₆-O₂ reaction in NO-C₃H₆-O₂. A similar situation could arise for the Fe(5 wt%)/Al₂O₃(500 and 800), since those were prepared by the

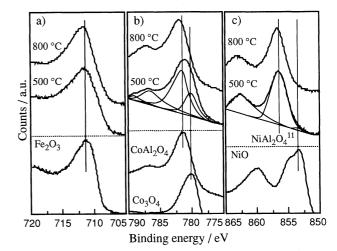


Figure 4. XPS spectra of (a) Fe(5 wt%)/Al₂O₃, (b) Co(5 wt%)/Al₂O₃, and (c) Ni(5 wt%)/Al₂O₃ in the region of $2p_{3/2}$.

impregnation method and also contained Fe₂O₃ particles. The above results suggest that the active metal species of Co(5 wt%)/ Al₂O₃(800) and Ni(5 wt%)/Al₂O₃(800) are the corresponding metal aluminates, but at present we can not rule out the possibility that trace amounts of the finely divided metal oxides will act as another active metal species.

By reducing the Co loading from 5 wt% to 0.2 wt%, the selective suppression of the C_2H_4 - O_2 reaction was successfully achieved over $Co/Al_2O_3(500)$, being in accord with expectations based on the result of the C_3H_6 - O_2 reaction in NO- C_3H_6 - O_2 over $Co/Al_2O_3(500)$ catalysts having Co loadings between 0.1 and 5 wt%, 9 while over $Fe(0.6 \text{ wt%})/Al_2O_3(500)$ no selective suppression of the C_2H_4 - O_2 reaction was observed (not shown).

In conclusion, it has been directly confirmed that over Co/ Al_2O_3 calcined at high temperatures, the oxidation of ethene by O_2 in the absence of NO was more strongly suppressed than the oxidation in the presence of NO, and has been newly found that Ni/Al_2O_3 exhibited a similar phenomenon too.

This work was supported in part by a Grant-in-Aid for Scientific Research on a Priority Area "Catalytic Chemistry of Unique Reaction Fields - Extreme Environmental Catalysts (No. 07242204)" from the Ministry of Education, Science, Sports, and Culture, Japan.

References

- 1 M. Iwamoto and H. Yahiro, Catal. Today, 22, 5 (1994)
- Y. Kintaichi, H. Hamada, M. Tabata, M. Sasaki, and T. Ito, Catal. Lett., 6, 239 (1990);
 H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 64, L1 (1990).
- 3 Y. Torikai, H. Yahiro, N. Mizuno, and M. Iwamoto, Catal. Lett., 9, 91 (1991).
- 4 H. Hamada, Y. Kintaichi, M. Sasaki, T. Ito, and M. Tabata, Appl. Catal., 75, L1 (1991).
- 5 M. Sasaki, H. Hamada, Y. Kintaichi, and T. Ito, Catal. Lett., 15, 297 (1992).
- 6 T. Miyadera, Appl. Catal. B: Environmental, 2, 199 (1993).
- 7 T. Miyadera and K. Yoshida, Chem. Lett., 1993, 1483.
- 8 Y. Ukisu, S. Sato, G. Muramatsu, and K. Yoshida, *Catal. Lett.*, **16**, 11 (1992).
- H. Hamada, Y. Kintaichi, M. Inaba, M. Tabata, T. Yoshinari, and H. Tsuchida, *Catal. Today*, 29, 53 (1996).
 H. Hamada, Y. Kintaichi, M. Tabata, M. Sasaki, and T. Ito, *Proceedings of*
- 10 H. Hamada, Y. Kintaichi, M. Tabata, M. Sasaki, and T. Ito, *Proceedings of the 5th Forum on Envir. Catal.* (1991)., **p. 25**.
- 11 R. B. Shalvoy, B. H. Davis, and P. J. Reucroft, Surf. Interface Anal., 2, 12 (1980).